Surface functional microstructures exhibit extensive application requirements in an array of breakthrough areas. One critical problem that restricts their industrial application is the lack of scalable fabrication techniques due to the limitation of conventional machine tools. This study proposes a scalable surface texturing technique using a portable small (30 × 19 × 22 mm) three‐leg robot that walks and works on the workpiece surface. Due to the elliptical tool vibration, microgrooves can be created on the workpiece surface periodically; meanwhile, the machining force drives the robot to walk forward. Surface texturing experiments are conducted on aluminum and copper workpieces to explore the machining performance of the small robot. The robot can reach a maximum moving velocity of 6.3 mm s−1 and can produce microstructures with a spacing of 4–14 μm on workpiece surfaces. Owing to its unique working principle, the small robot can maintain a constant depth of cut, demonstrating its capacity to adapt to the surface waviness of the workpiece. Finally, the motion straightness of the robot is greatly improved by combining it with the auxiliary track, and multiline microstructures are obtained. In short, the developed small robot presents a promising solution to the challenge of scalable surface texturing.