The structure and mechanical properties of gradient transition zones of the copper-nickel system formed by additive electron beam technology have been investigated. Pure copper and nickel alloy Ni80Cr20 were used for printing. The data obtained testify to the complex and heterogeneous nature of structure formation when printing both by single-wire method and using double-wire controlled feeding of material into the melt bath. In the samples, the formation of defects of different scale from local inhomogeneities of the structure to pores and cracks is possible. The mechanical properties of the structural gradient zone are at a sufficiently high level and depend on the ratio of the system components.