Abstract

Dislocation nucleation in solid solutions of face-centered-cubic metallic materials was studied using nanoindentation. The effects of solute impurities in the copper–nickel system on the formation of dislocations in a previously dislocation-free region were demonstrated to be minimal. The shear stress required to nucleate dislocations in copper is approximately 1.6 GPa, while in nickel a 3.9 GPa shear stress is required. Changes in shear stress for nucleation track closely with changes in elastic modulus showing the nucleation stress is approximately 1/30 to 1/20 of the shear modulus. The expected solid-solution strengthening is identified within the same experimental method, demonstrating unambiguously the fact that solid-solution impurities in this system will impact the propagation of dislocations during plastic deformation but not alter the homogeneous nucleation of dislocations in these materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call