The sulfur rich difluoropentathiodiphosphate dianion [S5 P2 F2 ]2- , from fluoride addition to P4 S10 , has a somewhat checkered history and proves to be the main product of the reaction in acetonitrile. Its optimized synthesis, and structural characterization, as either a tetraphenylphosphonium or a tetrapropylammonium salt, [Nn Pr4 ]2 [S5 P2 F2 ] allows for the first coordination chemistry for this dianion. Reactions of [S5 P2 F2 ]2- with d10 metal ions of zinc(II), and cadmium(II), and d9 copper(II) resulted in a surprising diverse array of binding modes and structural motifs. In addition to the simple bis-chelate coordination of [S5 P2 F2 ]2- with zinc, cleavage of the P-S bond resulted in complexes with the unusual [S3 PF]2- fluorotrithiophosphate dianion. This was observed in two cluster complexes: a trinuclear cadmium complex with mixed [S5 P2 F2 ]2- /[S3 PF]2- ligands, [Cd3 (S5 P2 F2 )3 (S3 PF)2 ]4- as well as an octanuclear copper cluster, [Cu8 (S3 PF)6 ]4- which form rapidly at room temperature. These new metal/sulfur/ligand clusters are of relevance to understanding multimetal binding to metallothionines, and to potential capping strategies for the condensed nanoparticulate cadmium chalcogenide semiconductors CdS and CdSe.
Read full abstract