Two structurally different aromatic dithioesters were synthesized from two dithiols and methacryloyl chloride. The polymer networks based on methyl methacrylate and/or styrene and the new dimethacrylates were subsequently prepared. The polymerization yields of copolymers were in the range of 95–99%. The thermal and mechanical properties of the copolymers were determined by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TG/DTG), and Shore D hardness. The addition of dithioesters—1,5-NAF-S-Met (or 1,4(1,5)-NAF-CH2S-Met) (from 0.5% to 5%) to MMA- or ST-based polymers results in lowering the glass transition temperature (Tg) by about 8 °C. The thioester-containing polymers based on MMA exhibit lower thermal stability than those with ST. The polythioesters are stable up to 250 °C. The UV/vis spectra and refractive indexes of prepared liquid compositions were also measured. The 1,5-NAF-S-Met (and 1,4(1,5)-NAF-CH2S-Met) improved the refractive index values of ST and MMA compositions. The double bond conversion was also determined for all synthesized materials. The swelling studies of polymers with 20% addition of thioester crosslinkers were investigated. For all polymeric materials with 20% addition of thioesters, depolymerization of the network was carried out by thiol-thioester exchange. The depolymerization products were re-reacted in a thiol-ene reaction with 2-hydroxyethyl methacrylate by thermal initiation. The thiol-ene procedure enabled reprocessing of starting polymers and obtaining new materials characterized by distinctly different thermal, mechanical, and swelling properties. The thiol-ene materials exhibit a lower Shore hardness in the range of 20–50 °Sh, as well as decreased Tg values when compared to starting copolymers. Due to these possible exchange reactions, one can facilely manipulate the properties of the polymers which could lead to the manufacturing of the new products with the desired features. Degradation of the cross-linked structure and recycling of copolymers were also discussed.