A series of carboxymethylcellulose (CMC) functionalized with glycidyl methacrylate (GMA) was successfully synthesized for producing of CMC-g-GMA copolymer. Water-soluble CMC-g-GMA copolymer was photo-crosslinked while Irgacure-2959 was used as a UV-photo-initiator at 365 nm. On the other hand, cellulose nanocrystals (CNCs) from sugarcane were graft-copolymerized in an aqueous solution utilizing cerium ammonium nitrate (CAN) as an initiator in a redox-initiated free-radical approach. CNCs were grafted with GMA to enhance their physicochemical and biological characteristics. Factors affecting hydrogel formation, e.g. CMC-g-GMA copolymer concentration, irradiation time and incorporation of different concentration of CNCs-g-GMA nano-filler, were discussed in dependance on the swelling degree and gel fraction of the produced hydrogels. Notably, the addition of CNCs-g-GMA nanofillers increased progressively thermal stability of the prepared hydrogel. CMC-g-GMA filled with CNCs-g-GMA composite hydrogel showed antimicrobial activity against multidrug resistance pathogens. Thus, CMC-g-GMA filled with CNCs-g-GMA composite hydrogel could be endorsed as compatible biomaterials for versatile biomedical applications.