AbstractMohar recently adapted the classical game of Cops and Robber from graphs to metric spaces, thereby unifying previously studied pursuit-evasion games. He conjectured that finitely many cops can win on any compact geodesic metric space, and that their number can be upper-bounded in terms of the ranks of the homology groups when the space is a simplicial pseudo-manifold. We disprove these conjectures by constructing a metric on $$\mathbb {S}^3$$ S 3 with infinite cop number. More problems are raised than settled.
Read full abstract