The proper coordination of directional overcurrent relays (DOCRs) is crucial in electrical power systems. The coordination of DOCRs in a multi-loop power system is expressed as an optimization problem. The aim of this study focuses on improving the protection system’s performance by minimizing the total operating time of DOCRs via effective coordination with main and backup DOCRs while keeping the coordination constraints within allowable limits. The coordination problem of DOCRs is solved by developing a new application strategy called Fractional Order Derivative Moth Flame Optimizer (FODMFO). This approach involves incorporating the ideas of fractional calculus (FC) into the mathematical model of the conventional moth flame algorithm to improve the characteristics of the optimizer. The FODMFO approach is then tested on the coordination problem of DOCRs in standard power systems, specifically the IEEE 3, 8, and 15 bus systems as well as in 11 benchmark functions including uni- and multimodal functions. The results obtained from the proposed method, as well as its comparison with other recently developed algorithms, demonstrate that the combination of FOD and MFO improves the overall efficiency of the optimizer by utilizing the individual strengths of these tools and identifying the globally optimal solution and minimize the total operating time of DOCRs up to an optimal value. The reliability, strength, and dependability of FODMFO are supported by a thorough statistics study using the box-plot, histograms, empirical cumulative distribution function demonstrations, and the minimal fitness evolution seen in each distinct simulation. Based on these data, it is evident that FODMFO outperforms other modern nature-inspired and conventional algorithms.
Read full abstract