Background: Schiff bases, especially Azo-Schiff bases, are significant ligands in organic chemistry due to their coordination capabilities. They find applications in various industrial sectors and biological studies. Metal complexes of Schiff bases, particularly with tetradentate ligands, have gained attention for their potential pharmacological benefits. However, there is limited information on the biological activities of certain Schiff base complexes, such as 1H-indole-3-ethylenesalicyldamine derivatives. Method: The synthesis of bis azo-Schiff base ligands and their metal complexes, including Ni(II), Co(II), Pd(II), and Pt(IV) complexes, was conducted. Various analytical techniques were employed to characterize the compounds using FTIR, NMR, UV-Vis spectroscopy, mass spectrometry, and molar conductivity. Biological activities, including antibacterial and cytotoxicity studies, were evaluated. Results: The synthesized compounds demonstrated stability and structural characteristics consistent with the intended coordination geometries. IR spectra confirmed the coordination of metal ions with the ligands. The complexes were evaluated for the antimicrobial activity against two types strains of Gram-negative Escherichia coli and Gram-positive bacteria Staphylococcus aureus and showed good significant against these bacteria. The Pd(II) complex demonstrated higher efficacy against cancer cells compared to normal cells, highlighting its potential as an anticancer agent. The cytotoxicity of the Pd (II) complex on human malignant melanoma A375 and Normal cell WRL-68 were IC50 23.83 and IC50 153.7, respectively. Molecular docking studies provide insights into the interaction of the complexes with target proteins, offering potential modes of action. Conclusion: The study successfully synthesized and characterized bis azo-Schiff base ligands and their metal complexes, demonstrating their stability and promising biological activities.
Read full abstract