This paper studies the maximum reliability of multi-hop relay UAVs, in which UAVs provide wireless services for remote users as a coded cooperative relay without an end-to-end direct communication link. In this paper, the analytical expressions of the total power loss and total bit error rate are derived as reliability measures. First, based on the environmental statistical parameters, a LOS probability model is proposed. Then, the problem of minimizing the bit error rate of static and mobile UAVs is studied. The goal is to minimize the total bit error rate by jointly optimizing the height, elevation, power and path loss and introducing the maximum allowable path loss constraints, transmission power allocation constraints, and UAV height and elevation constraints. At the same time, the total path loss is minimized to achieve maximum ground communication coverage. However, the formulated joint optimization problem is nonconvex and generally difficult to solve. Therefore, we decomposed the problem into two subproblems and proposed an effective joint optimization iteration algorithm. Finally, the simulation results are given, and the analysis shows that the optimal height of different reliability measures is slightly different; thus, using the mobility of UAVs can improve the reliability of communication performance.
Read full abstract