Abstract

Non-orthogonal multiple access (NOMA) represents the latest addition to the array of multiple access techniques, enabling simultaneous servicing of multiple users within a singular resource block in terms of time, frequency, and code. A typical NOMA configuration comprises a base station along with proximate and distant users. The proximity users experience more favorable channel conditions in contrast to distant users, resulting in a compromised performance for the latter due to the less favorable channel conditions. When cooperative communication is integrated with NOMA, the overall system performance, including spectral efficiency and capacity, is further elevated. This study introduces a cooperative NOMA setup in the downlink, involving three users, and employs dynamic power allocation (DPA). Within this framework, User 2 acts as a relay, functioning under the decode-and-forward protocol, forwarding signals to both User 1 and User 3. This arrangement aims to bolster the performance of the user positioned farthest from the base station, who is adversely affected by weaker channel conditions. Theoretical and simulation outcomes reveal enhancements within the system’s performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call