A large number of studies related to ultrasound-based radiomics have been published in recent years; however, a systematic bibliometric analysis of this topic has not yet been conducted. In this study, we attempted to identify the hotspots and frontiers in ultrasound-based radiomics through bibliometrics and to systematically characterize the overall framework and characteristics of studies through mapping and visualization. A literature search was carried out in Web of Science Core Collection (WoSCC) database from January 2016 to December 2023 according to a predetermined search formula. Bibliometric analysis and visualization of the results were performed using CiteSpace, VOSviewer, R, and other platforms. Ultimately, 466 eligible papers were included in the study. Publication trend analysis showed that the annual publication trend of journals in ultrasound-based radiomics could be divided into three phases: there were no more than five documents published in this field in any year before 2018, a small yearly increase in the number of annual publications occurred between 2018 and 2022, and a high, stable number of publications appeared after 2022. In the analysis of publication sources, China was found to be the main contributor, with a much higher number of publications than other countries, and was followed by the United States and Italy. Frontiers in Oncology was the journal with the highest number of papers in this field, publishing 60 articles. Among the academic institutions, Fudan University, Sun Yat-sen University, and the Chinese Academy of Sciences ranked as the top three in terms of the number of documents. In the analysis of authors and cocited authors, the author with the most publications was Yuanyuan Wang, who has published 19 articles in 8 years, while Philippe Lambin was the most cited author, with 233 citations. Visualization of the results from the cocitation analysis of the literature revealed a strong centrality of the subject terms papillary thyroid cancer, biological behavior, potential biomarkers, and comparative assessment, which may be the main focal points of research in this subject. Based on the findings of the keyword analysis and cluster analysis, the keywords can be categorized into two major groups: (I) technological innovations that enable the construction of radiomics models such as machine learning and deep learning and (II) applications of predictive models to support clinical decision-making in certain diseases, such as papillary thyroid cancer, hepatocellular carcinoma (HCC), and breast cancer. Ultrasound-based radiomics has received widespread attention in the medical field and has been gradually been applied in clinical research. Radiomics, a relatively late development in medical technology, has made substantial contributions to the diagnosis, prediction, and prognostic evaluation of diseases. Additionally, the coupling of artificial intelligence techniques with ultrasound imaging has yielded a number of promising tools that facilitate clinical decision-making and enable the practice of precision medicine. Finally, the development of ultrasound-based radiomics requires multidisciplinary cooperation and joint efforts from the field biomedicine, information technology, statistics, and clinical medicine.