The construction of an integrated national strategic system and capability is an essential goal of implementing the strategy of military-civilian integration in the contemporary era. And the collaborative innovation of military-civilian S&T is an inevitable choice to achieve this goal. Due to the dynamic, complex, and stochastic characteristics of military-civilian S&T collaborative innovation, the level of S&T innovation is highly volatile. This paper takes the internal and external stochastic disturbance factors of military-civilian S&T collaborative innovation as the perspective, studies the strategy selection problem of military-civilian S&T collaborative innovation under military domination, constructs a differential game model to explore the innovation strategies under the non-cooperative model without military subsidies, the non-cooperative model with military subsidies, and the collaborative model. Finally, we use numerical experiments to verify the validity of the conclusions. The study shows that: (1) Within a reasonable range of values of the benefit distribution coefficient, the system can achieve the Pareto optimum, and the collaborative model is conducive to improving the S&T innovation level and the optimum benefit level of the system. (2) Military subsidies can increase the benefits of the system and the parties involved to achieve Pareto improvement. (3) The level of S&T innovation under the collaborative model has dynamic evolutionary characteristics of maximum expectation and variance. As the intensity of disturbance increases, the stability of the system may be destroyed. Risk-averse civil enterprises prefer the cooperative mode, whereas risk-averse civil enterprises prefer the non-cooperative model.
Read full abstract