Abstract Results are given of computer calculations, using the reactor thermal analysis code THETA1-B, to determine the significance and relative importance of various heat transfer regimes in predicting maximum fuel cladding temperature for the blowdown phase of a postulated loss-of-coolant accident (LOCA) in a pressurized water reactor system. The factors considered include the choice of heat transfer correlation for a particular heat transfer regime, the method of delineating the boundaries between regimes, and core inlet coolant flow conditions. For a hot-leg rupture, the maximum surface temperature is sensitive to a number of factors, including choices of critical heat flux correlation, flow boiling transition heat transfer correlation, and in particular, stable film flow boiling correlation. However, for a LOCA resulting from a double-ended rupture of an inlet feeder, these factors have only marginal effects on maximum cladding temperature. In this case the importance of heat transfer to dry steam coolant at low net flow rate conditions is demonstrated, indicating a need for further information.
Read full abstract