With the widespread use of electric vehicles (EVs), the charging behavior of these resources has brought a large amount of load growth to the grid, leading to a series of problems such as increased peak valley load difference and line flow violation. Non-intrusive load monitoring (NILM) is a key technology that can be employed to monitor the multi-source load data information in the power grid and support the high-proportion access of electric vehicles. However, traditional NILM approaches are designed to identify the operation of household appliances and cannot be applied at the substation level directly due to frequent and intricate switching events of electrical equipment at this stage. In this paper, a NILM algorithm that can be applied for the monitoring of the charging behavior of electric vehicles at the substation level is proposed to support the high-proportion injection of distributed energy resources. The proposed approach employs a deep learning framework and a multi-kernel convolutional neural network (multi-kernel CNN) framework is used. The performance of the proposed method is verified on the self-organized datasets based on Pecan Street data and results showed that the obtained f1 score is over 90% for both the training sets and testing sets.
Read full abstract