Abstract The main purpose of this paper is to investigate the non-archimedean counterpart of the classical result stating that the dual of a real or complex metrizable locally convex space, equipped with the locally convex topology of uniform convergence on compact sets, belongs to the topological category formed by the k-spaces. We prove that this counterpart holds when the non-archimedean valued base field 𝕂 {\mathbb{K}} is locally compact, but fails for any non-locally compact 𝕂 {\mathbb{K}} . Here we deal with a topological subcategory, the one formed by the k 0 {k_{0}} -spaces, the adequate non-archimedean substitutes for k-spaces. As a product, we complete some of the achievements on the non-archimedean Banach–Dieudonné Theorem presented in [C. Perez-Garcia and W. H. Schikhof, The p-adic Banach–Dieudonné theorem and semi-compact inductive limits, p-adic Functional Analysis (Poznań 1998), Lecture Notes Pure Appl. Math. 207, Dekker, New York 1999, 295–307]. Also, we use our results to construct in a simple way natural examples of k-spaces (which are also k 0 {k_{0}} -spaces) whose products are not k 0 {k_{0}} -spaces. This in turn improves the, rather involved, example given in [C. Perez-Garcia and W. H. Schikhof, Locally Convex Spaces over non-Archimedean Valued Fields, Cambridge Stud. Adv. Math. 119, Cambridge University Press, Cambridge, 2010] of two k 0 {k_{0}} -spaces whose product is not a k 0 {k_{0}} -space. Our theory covers an important class of non-archimedean Fréchet spaces, the Köthe sequence spaces, which have a relevant influence on applications such as the definition of a non-archimedean Laplace and Fourier transform.
Read full abstract