In this paper, we present the preliminaries of ( p , q ) -calculus for functions of two variables. Furthermore, we prove some new Hermite-Hadamard integral-type inequalities for convex functions on coordinates over [ a , b ] × [ c , d ] by using the ( p , q ) -calculus of the functions of two variables. Furthermore, we establish an identity for the right-hand side of the Hermite-Hadamard-type inequalities on coordinates that is proven by using the ( p , q ) -calculus of the functions of two variables. Finally, we use the new identity to prove some trapezoidal-type inequalities with the assumptions of convexity and quasi-convexity on coordinates of the absolute values of the partial derivatives defined in the ( p , q ) -calculus of the functions of two variables.
Read full abstract