With an increasing number of Biopharmaceutical Classification System (BCS) II/IV pipeline compounds, solubilizing and supersaturating formulation strategies are becoming prevalent. Beyond formulation and solid form strategies, prodrugs are also employed to overcome solubility-limited absorption of poorly water-soluble compounds. Prodrugs can potentially yield supersaturated systems upon conversion to the parent drug intraluminally and thus enhance absorption. However, supersaturation also increases the driving force for crystallization, resulting in low solution concentrations, which can potentially negate the advantage of prodrugs. In this work, two unique solubility-enhancing prodrugs, phosphate and glycine esters, were investigated for a rapidly crystallizing parent drug. Ex vivo absorption studies using rat tissue and in vivo studies in dogs were performed. Conversion rate of the phosphate prodrug to the parent was dependent on the milieu and increased ∼24-fold in the presence of intestinal contents as medium and tissue relative to neat buffer. In contrast, conversion of the glycine prodrug was minimal under any conditions tested, suggesting that the conversion occurs after absorption into the enterocytes. Phosphate prodrug showed a non-linear increase in parent drug absorptive flux across rat intestinal tissue with concentration when intestinal contents were used as donor media. This was attributed to rapid conversion and high supersaturation of the parent drug which subsequently resulted in crystallization at high doses in the donor chamber. Glycine prodrug did not undergo complete conversion at high doses and was absorbed unchanged on the basolateral side, indicating saturation of the converting enzymes in the enterocytes. The combined flux (parent drug and glycine) showed a linear increase with dose and crystallization was not observed. Under physiological conditions, glycine prodrug that is absorbed unchanged from the intestine can potentially undergo complete conversion in hepatocytes after absorption and make the parent drug systemically available. Thus, glycine prodrug provided overall higher absorption compared to phosphate prodrug. The observed flux levels for both the prodrugs were higher compared to the parent drug alone, highlighting an advantage to use of a prodrug strategy to improve absorption of such compounds. Oral dosing in a dog PK study revealed that the bioavailability using the phosphate prodrug was ∼50% whereas, it was ∼100% with glycine prodrug, supporting the in vitro observations.