This study introduces novel concepts of convergence and summability for numerical sequences, grounded in the newly formulated deferred Nörlund density, and explores their intrinsic connections to symmetry in mathematical structures. By leveraging symmetry principles inherent in sequence behavior and employing two distinct modulus functions under varying conditions, profound links between sequence convergence and summability are established. The study further incorporates lacunary refinements, enhancing the understanding of Nörlund statistical convergence and its symmetric properties. Key theorems, properties, and illustrative examples validate the proposed concepts, providing fresh insights into the role of symmetry in shaping broader convergence theories and advancing the understanding of sequence behavior across diverse mathematical frameworks.
Read full abstract