Total skin electron therapy (TSET) is a complex radiotherapy technique, posing challenges in commissioning and quality assurance (QA), especially due to significant variability in patient body shapes. Previous studies have correlated dose with factors such as obesity index, height, and gender. However, current treatment planning systems cannot simulate TSET plans, necessitating heavy reliance on QA methods using standardized anthropomorphic phantoms and in-vivo dosimetry. Given the relatively few studies on rotational techniques, comprehensive data in commissioning could streamline the process. Developing a full-body phantom would enable a more thorough TSET commissioning process, including testing for position-specific dose distributions and comprehensive measurements across all body surfaces, unlike the typical torso-only phantoms. This was created using digital modeling software, fabricated using 3D-printing FDM technology, and filled with tissue-equivalent gelatine. The phantom was positioned at an SSD of 340cm and irradiated with a standard rotational TSET plan using the 6E HDTSE mode on a Varian TrueBeam linac at gantry angles of±18° from the horizontal. The dose was measured at over 50 points across the surface using Gafchromic EBT3 film. Dose distributions were generally consistent with existing literature values from in-vivo dosimetry, with several position-specific differences identified, including the hands and scalp compared to conventional positions. Hotspots were observed for the mid-dorsum of the foot and nose, with areas under 80% of the dose identified as the soles of the feet, perineum, vertex of the scalp, top of the shoulder, and palm of the hand. Additionally, analysis using an interpolated dose heatmap found that 90% of the pixel area received a dose within 10% of the prescribed dose, indicating good uniformity with the commissioned technique. With high agreement with the current literature, a 3D-printed phantom proves effective for measuring doses in areas typically unmeasurable in TSET commissioning.
Read full abstract