The perovskite-structured materials Pb0.75Ba0.251-xCax(Zr0.7Ti0.3)O3 for x = 1 and 2 at.% were synthesized using the conventional mixed-oxide method and carbonates. Microstructural analysis, performed using a scanning electron microscope, revealed rounded grains with relatively inhomogeneous sizes and distinct grain boundaries. X-ray diffraction confirmed that the materials exhibit a rhombohedral structure with an R3c space group at room temperature. Piezoelectric resonance measurements were conducted to determine the piezoelectric and elastic properties of the samples. The results indicated that a small amount of calcium doping significantly enhanced the piezoelectric coefficient d31. The calcium-doped ceramics exhibited higher electrical permittivity across the entire temperature range compared to the pure material, as well as a significant value of remanent polarization. These findings indicate that the performance parameters of the base material have been significantly improved, making these ceramics promising candidates for various applications.