In recent years, embedded dynamic random-access memory (eDRAM) technology has been implemented in last-level caches due to its low leakage energy consumption and high density. However, the fact that eDRAM presents slower access time than static RAM (SRAM) technology has prevented its inclusion in higher levels of the cache hierarchy. This paper proposes to mingle SRAM and eDRAM banks within the data array of second-level (L2) caches. The main goal is to achieve the best trade-off among performance, energy, and area. To this end, two main directions have been followed. First, this paper explores the optimal percentage of banks for each technology. Second, the cache controller is redesigned to deal with performance and energy. Performance is addressed by keeping the most likely accessed blocks in fast SRAM banks. In addition, energy savings are further enhanced by avoiding unnecessary destructive reads of eDRAM blocks. Experimental results show that, compared to a conventional SRAM L2 cache, a hybrid approach requiring similar or even lower area speedups the performance on average by 5.9 percent, while the total energy savings are by 32 percent. For a 45 nm technology node, the energy-delay-area product confirms that a hybrid cache is a better design than the conventional SRAM cache regardless of the number of eDRAM banks, and also better than a conventional eDRAM cache when the number of SRAM banks is an eighth of the total number of cache banks.