The absence of effective wastewater treatment technology to eliminate emerging pollutants from municipal sewage has become a pressing issue. In this study, the efficacy of a novel modified trickling filter (MTF), conventional activated sludge process (ASP) and two tertiary systems (UV and ozonation) were compared in eliminating antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and pharmaceuticals and personal care products (PPCPs) from urban sewage. MTF and ASP resulted in >1 log unit reduction in the abundance of ARB, while for ARGs, the removal was observed in the range of 0.1 to 1.7 log units. In MTF, ARGs were substantially removed in the aerobic zone compared to the anoxic zone. The relative abundance of most of the ARGs either decreased or remained unchanged during MTF and ASP operations. However, the relative abundance of most of the ARGs increased in the secondary sludge generated from ASP. The concentration of PPCPs such as atenolol, sulfamethazine, triclosan, and ranitidine was reduced by MTF by >80 %. Overall, the results indicated that MTF followed by ozonation is the most effective combination for removing emerging contaminants from municipal sewage.
Read full abstract