The performance of Au and nanoparticles in Casson flow propelled by the rotational effect subject to convective heating and variable Darcy phenomenon is presented. As a means to contribute significantly to the biomedical industry for proper prediction and treatment of diseases like cancer, stenosis, et cetera, the Casson fluid model and magnetohydrodynamic effect are employed in this study to investigate the bidirectional-rotating boundary layer flow of blood since Casson rheology best describe the mammalian blood flow dynamics and that blood is electrically conducting in nature. The enormous performance of nanoparticles made them extremely useful; hence, they gained recognition over the conventional refrigerants and were widely used by scientists, modelers, and researchers for controlling and treating diseases via drug targeting (chemotherapy), etc. In the three-dimensional plane, the assumed electrically conducting fluid conveying nanoparticles is properly mixed through the Coriolis force, thus rotating with angular velocity across the variable porous medium. A numerical tool, Chebyshev Collocation Method (CCM) with pseudo-spectral approach, is deployed on the resulting transformed ODEs. Profile distributions of respective boundary layers to distinct responses of model parameters, including the Eckman, Darcy, and Biot numbers on Au and nanoparticles, are analyzed and discussed. The dominance of nanoparticles on both velocities is revealed, while Au nanoparticles demonstrated a higher thermal performance rate. A rise in the Darcy parameter has a diametrically opposed behavior on the primary and secondary velocities.