This paper considers a problem of nonholonomic motion planning. A practical paradigm for planning and stabilization of motion in a class of multivariate nonlinear (nonholonomic) systems is presented and applied to a planar free-floating manipulator system. The controller architecture designed in the paper is based on the radial basis function approximation of an optimal control program for any desired motion. This architecture also incorporates a sampled-data feedback stabilization algorithm. The proposed control technique overcomes certain problems associated with other control approaches available for nonholonomic systems. The presented simulation results reveal a promising potential of the proposed control paradigm. This paradigm can be extended to a broader class of nonlinear control problems.
Read full abstract