Marine protected areas (MPAs) can allow some fish populations to rebuild within their borders in areas impacted by overfishing, but the effectiveness of reserves is highly dependent on how effectively fishing mortality is controlled, which in turn depends on the level of fishery management implementation. In Cuba’s Gardens of the Queen MPA, the largest in the Caribbean, a variety of fishery management measures have been implemented to ensure the social, economic, and political viability of protecting such a large area. Here, we evaluate the biological response, in terms of fish density and the biomass of commercially valuable and ecologically important reef fish species, to a spatial gradient of fishery management enforcement, in terms of fish density and biomass, of commercially valuable and ecologically important reef fish species. The enforcement gradient is characterized by the level of protection, fishing effort, patrolling effort, distance to the nearest fishing port, and fishing intensity. Fish density and biomass were estimated from visual scuba surveys. Areas with higher levels of enforcement support higher levels of average biomass (up to 1378 kg/ha) and density (up to 2367 indv./ha) of commercially important fishes in comparison to areas with very low or no enforcement (estimates of 757 kg/ha average biomass and 1090 indv./ha average density, respectively). These fish density and biomass levels can serve as proxies in the development of harvest control rules that adjust fishing pressure according to the ratio of fished density or biomass to unfished density or biomass, through the use of the MPA Density Ratio method.
Read full abstract