To investigate the effects of different typical exogenous salt concentrations on total soil salinity and the growth of Lycium barbarum under brackish water irrigation, and to determine the salinity threshold of irrigated brackish water that is conducive to the normal growth of Lycium barbarum while mitigating soil salinity accumulation. Four typical exogenous salts (NaCl, CaCl2, NaHCO3, Na2SO4) were selected and set at four concentrations (0.1, 0.5, 2.0, 4.0 g L−1) to conduct a field crossover experiments in the downstream region of the Hetao Irrigation District. The results showed that in the same fertility period, the growth rates of new branches, ground diameter, and crown width first increased and then decreased with rising concentrations of NaCl, CaCl2, and Na2SO4, but showed an inverse relationship with NaHCO3 concentrations. Furthermore, increasing salt concentrations linearly reduced the yield of dry fruits from Lycium barbarum and led to a notable accumulation of total soil salts. Utilizing an experimental research approach, a comprehensive analysis of involving multiple growth indices, stable yield, and soil salinity control of Lycium barbarum revealed that optimal growth occurs at salt concentrations of 0.1–0.5 g L−1 for different water quality areas within the irrigation area; using the method of path analysis identified the total soil salt and crown width as the primary direct and indirect factors influencing the yield of Lycium barbarum. The results of this study provide scientific basis and significant theoretical support for the safe and rational utilization of brackish water and cultivation of Lycium barbarum in typical regions with varying saline water qualities of Hetao irrigation area.
Read full abstract