Phenotypic changes and functional impairment of natural killer (NK) cells occur early in HIV-1 infection. Antiretroviral therapy (ART) effectively restores CD4+ T cell counts and suppresses HIV-1 to undetectable levels. The role and efficacy of immediate ART initiation in mitigating NK cell aberrations remain to be elucidated comprehensively. This study hypothesized that HIV-1 infection negatively influences NK cell evolution and that early ART initiation restores these perturbations. Blood samples were collected longitudinally from five acutely HIV-1 infected men who have sex with men in Nairobi, Kenya. Participants were immediately initiated on ART after HIV-1 diagnosis. Blood samples were drawn pre-infection and at sequential bi-weekly post-infection time points. Peripheral blood mononuclear cells were stained with panel NK cells surface markers to assess HIV-induced phenotypic changes by flow cytometry. Some cells were also stimulated overnight with K562 cell line, IL-2, and IL-15 and stained for flow cytometry functionality. HIV-1 infection was associated with significant reductions in the production of IFN-γ (P = 0.0264), expression of CD69 (P = 0.0110), and expression of NK cell inhibitory receptor Siglec7 (P = 0.0418). We observed an increased NK cell degranulation (P = 0.0100) and an upregulated expression of cell exhaustion marker PD-1 (P = 0.0513) at post-infection time points. These changes mainly were restored upon immediate initiation of ART, except for Siglec7 expression, whose reduced expression persisted despite ART. Some HIV-associated changes in NK cells may persist despite the immediate initiation of ART in acute HIV-1 infections. Our findings suggest that understanding NK cell dynamics and their restoration after ART can offer insights into optimizing HIV-1 treatment and potentially slowing disease progression.IMPORTANCENatural killer (NK) cells play a crucial role in controlling of HIV-1 replication and progression to disease. Perturbations of their functionality may therefore result in deleterious disease outcomes. Previous studies have demonstrated reduced NK cell functionality in chronic HIV-1 infection that positively correlated to HIV-1 viral load. This may suggest that control of HIV-1 viremia in acute HIV-1 infection may aid in enhancing NK cell response boosting the inate immunity hence effective control of viral spread and establishment of viral reservoir. Antiretroviral therapy (ART) effectively supresses HIV-1 viremia to undectable levels and restores CD4+ T cell counts. Our study highlights the significant role of early ART initiation in mitigating NK cell disruptions caused by acute HIV-1 infection. Our results suggest that early initiation of ART could have benefits beyond suppressing viral load and restoring CD4+ T cell counts. In addition, it could boost the innate immunity necessary to control disease progression.