Abstract The paper deals with the problem of robust predictive fault-tolerant control for nonlinear discrete-time systems described by the Takagi-Sugeno models. The proposed approach is based on a triple stage procedure, i.e. it starts from fault estimation while the fault is compensated with a robust controller. The robust controller is designed without taking into account the input constraints related with the actuator saturation that may change due to its faulty behaviour. Thus, to check the compensation feasibility, the robust invariant set is developed, which takes into account the input constraints. If the current state does not belong to the robust invariant set, then suitable predictive control actions are performed in order to enhance the invariant set. This appealing phenomenon makes it possible to enlarge the domain of attraction, which makes the proposed approach an efficient solution for the fault-tolerant control. The final part of the paper shows an illustrative example regarding the application of the proposed approach to the twin-rotor system.