The role of redox mediators in improving electron transport from electrochemically active bacteria to the anode is crucial for enhanced bioelectricity output from microbial fuel cells (MFCs), which makes the selection of an ideal mediator very important. This study aims at exploring a new redox mediator niacin (vit B3) for enhanced bioelectricity generation in MFC while treating distillery wastewater through facile modification of anode electrode by niacin doping (MFC-NME) and simple application of niacin to the anolyte (MFC-NAA). Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) of NME confirmed the effective adsorption of niacin onto the carbon felt surface. Notably, MFC-NME exhibited a significantly higher power density (PD) of 6.36 W/m3 compared to MFC-NAA (4.59 W/m3) and control MFC (3.49W/m3). The charge transfer resistance (RCT) in MFC-NME (1.73 Ω) and MFC-NAA (2.06 Ω) were lowered by more than half than that in control MFC (4.33 Ω), which underscores the efficacy of niacin as a redox mediator. SEM analysis revealed improved bacterial attachment over the bioanode in the MFC-NME as compared to that of MFC-NAA and control MFC. Removal of chemical oxygen demand (COD) was higher in MFC-NAA (85%) and MFC-NME (80%) than in control MFC (73%) suggesting that niacin in the anolyte supported greater organic matter removal due to enriched microbial activity. Niacin used in anode modification shows great potential for improved electron transfer and enhanced bioelectricity production and supports greater wastewater treatment performance. The modified bioanode NME exhibits excellent stability.