The article proposes a model-free sliding mode prescribed performance control method for robotic manipulator. For accelerating the errors converging rate as well as bringing down the real-time control torque, an error-driven nonsingular fast terminal sliding mode is employed in this control method. Besides, a modified power reaching law is newly designed, which is able to offer better chattering elimination performance than traditional power reaching law. To solve the problem that the controller’s performance highly relies on the accuracy of robotic model, a model-free control idea is introduced where an ultra-local model is established and the estimation of time delay is used to approximate the unknown part of the ultra-local model. Considering the transient performance is a significant element that effects the using security and system stability, the technique of prescribed performance control is introduced to limit the state errors in a prescribed region. The closed-loop stability proof of the whole system is achieved according to Lyapunov’s stability theorem. The proposed controller’s superiority and feasibility compared with other controllers are demonstrated by numerical simulations.
Read full abstract