Nitrogen is important for fungal growth and development, and the GATA transcription factor AreA has been widely studied as a key regulator of nitrogen catabolite repression (NCR) in many fungi. However, AreB, another GATA transcription factor in the NCR pathway, remains less studied, and its role in Aspergillus flavus is still unclear. In this study, we characterized areB in A. flavus and investigates its role in regulating nitrogen utilization, fungal growth, and aflatoxin production. The areB gene produces three transcripts, with areB-α being the most abundantly expressed, particularly under nitrogen-limited conditions. Gene expression analysis via qPCR confirmed that areB acts as a negative regulator of NCR, as its deletion led to the upregulation of NCR-related genes under nitrogen-limiting conditions. Gene function analysis of areB revealed that its deletion impaired hyphal growth, reduced conidia production, and delayed conidial germination. Additionally, deletion of areB led to increased aflatoxin production, particularly under less favorable nitrogen sources, while overexpression of areB reduced aflatoxin levels. Furthermore, areB influenced sclerotia formation in a nitrogen-source-dependent manner. These findings reveal the multifaceted role of areB in nitrogen regulation, fungal development, and secondary metabolism, offering insights for controlling aflatoxin contamination and fungal growth.
Read full abstract