Electron microscopy (EM) is the most versatile tool for the study of matter at scales ranging from subatomic to visible. The high vacuum environment and the charged irradiation require careful stabilization of many specimens of interest. Biological samples are particularly sensitive due to their composition of light elements suspended in an aqueous medium. Early investigators developed techniques of embedding and staining with heavy metal salts for contrast enhancement. Indeed, the Nobel Prize in 1974 recognized Claude, de Duve, and Palade for establishment of the field of cell biology, largely due to their developments in separation and preservation of cellular components for electron microscopy. A decade later, cryogenic fixation was introduced. Vitrification of the water avoids the need for dehydration and provides an ideal matrix in which the organic macromolecules are suspended; the specimen represents a native state, suddenly frozen in time at temperatures below -150 °C. The low temperature maintains a low vapor pressure for the electron microscope, and the amorphous nature of the medium avoids diffraction contrast from crystalline ice. Such samples are extremely delicate, however, and cryo-EM imaging is a race for information in the face of ongoing damage by electron irradiation. Through this journey, cryo-EM enhanced the resolution scale from membranes to molecules and most recently to atoms. Cryo-EM pioneers, Dubochet, Frank, and Henderson, were awarded the Nobel Prize in 2017 for high resolution structure determination of biological macromolecules.A relatively untapped feature of cryo-EM is its preservation of composition. Nothing is added and nothing removed. Analytical spectroscopies based on electron energy loss or X-ray emission can be applied, but the very small interaction cross sections conflict with the weak exposures required to preserve sample integrity. To what extent can we interpret quantitatively the pixel intensities in images themselves? Conventional cryo-transmission electron microscopy (TEM) is limited in this respect, due to the strong dependence of the contrast transfer on defocus and the absence of contrast at low spatial frequencies.Inspiration comes largely from a different modality for cryo-tomography, using soft X-rays. Contrast depends on the difference in atomic absorption between carbon and oxygen in a region of the spectrum between their core level ionization energies, the so-called water window. Three dimensional (3D) reconstruction provides a map of the local X-ray absorption coefficient. The quantitative contrast enables the visualization of organic materials without stain and measurement of their concentration quantitatively. We asked, what aspects of the quantitative contrast might be transferred to cryo-electron microscopy?Compositional contrast is accessible in scanning transmission EM (STEM) via incoherent elastic scattering, which is sensitive to the atomic number Z. STEM can be regarded as a high energy, low angle diffraction measurement performed pixel by pixel with a weakly convergent beam. When coherent diffraction effects are absent, that is, in amorphous materials, a dark field signal measures quantitatively the flux scattered from the specimen integrated over the detector area. Learning to interpret these signals will open a new dimension in cryo-EM. This Account describes our efforts so far to introduce STEM for cryo-EM and tomography of biological specimens. We conclude with some thoughts on further developments.
Read full abstract