BACKGROUND. Patients with cancer undergo frequent CT examinations with iodinated contrast media and may be uniquely predisposed to contrast-associated acute kidney injury (CA-AKI). OBJECTIVE. The purpose of this study was to develop and validate a model for predicting the risk of CA-AKI after contrast-enhanced CT in patients with cancer. METHODS. This retrospective study included 25,184 adult patients (12,153 men, 13,031 women; mean age, 62.3 ± 13.7 [SD] years) with cancer who underwent 46,593 contrast-enhanced CT examinations between January 1, 2016, and June 20, 2020, at one of three academic medical centers. Information was recorded regarding demographics, malignancy type, medication use, baseline laboratory values, and comorbid conditions. CA-AKI was defined as a 0.3-mg/dL or greater increase in serum creatinine level from baseline within 48 hours after CT or a 1.5-fold or greater increase in the peak measurement within 14 days after CT. Multivariable models accounting for correlated data were used to identify risk factors for CA-AKI. A risk score for predicting CA-AKI was generated in a development set (n = 30,926) and tested in a validation set (n = 15,667). RESULTS. CA-AKI occurred after 5.8% (2682/46,593) of CT examinations. The final multivariable model for predicting CA-AKI included hematologic malignancy, diuretic use, angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use, chronic kidney disease (CKD) stage 3a, CKD stage 3b, CKD stage 4 or 5, serum albumin level less than 3.0 g/dL, platelet count less than 150 × 103/μL, 1+ or greater proteinuria on baseline urinalysis, diabetes mellitus, heart failure, and contrast medium volume 100 mL or greater. A risk score (range, 0-53 points) was generated with these variables. The most points (13) were for CKD stage 4 or 5 and for albumin level less than 3 g/dL. The frequency of CA-AKI progressively increased in higher risk categories. For example, in the validation set, CA-AKI occurred after 2.2% of CT examinations in the lowest risk category (score ≤ 4) and after 32.7% of CT examinations in the highest risk category (score ≥ 30). The Hosmer-Lemeshow test result indicated that the risk score was a good fit (p = .40). CONCLUSION. A risk model in which readily available clinical data are used to predict the likelihood of CA-AKI after contrast-enhanced CT in patients with cancer was developed and validated. CLINICAL IMPACT. The model may help facilitate appropriate implementation of preventive measures in the care of patients at high risk of CA-AKI.
Read full abstract