An increase in the availability of adaptive radiotherapy (ART) platforms have proven to be effective in the treatment of a variety of sites. In this study, we aim to evaluate the effectiveness of non-adaptive RT and 3 different ART platforms: (1) CBCT-based, (2) CT-based, and (3) MRI-based for stereotactic partial breast irradiation (SPBI). Data were collected from 32 patients (16 left and 16 right breast) treated at a single institution. 16 patients (8 left and 8 right) treated using the non-ART platform were re-planned onto two different ART platforms, CBCT- and MRI-based. The remaining 16 patients treated using CT-based adaptive platform were not re-planned due to the prone patient treatment position (others systems supine). All cases were planned to 30 Gy in 5 fractions. Plan quality was evaluated based on pre-defined planning goals to the OARS: ipsilateral and contralateral lungs (Dmean, Dmax, V20 Gy, V9 Gy), ipsilateral (V15 Gy, V30 Gy) and contralateral breasts (Dmax), heart (Dmean, Dmax, V3 Gy, V1.5 Gy), skin (Dmax, V36.5 Gy), and rib (Dmax, V30 Gy). Target goals were defined by Dmax, Dmin, gradient index, and paddock conformality index. Re-planned cases were compared within the cohort using a paired t-test and a 2-sided t-test was used comparing to the CT-based platform. Comparing the left and right breast cohort across all platforms, the CT-based ART system showed a signification dose reduction in Dmean (p<0.001 for all platforms), Dmax (p<0.001 for left breast, p<0.03 for right breast) and V9 Gy (p<0.004 for left breast, p<0.001 for right breast) to the ipsilateral lung, V15 Gy (p<0.004 for left breast cohort) to the ipsilateral breast, and Dmax to the contralateral breast (p<0.001) and ribs (p = 0.01, p<0.001, p = 0.01 for CBCT-ART, MRI-ART, and non-ART for left breast cohort only). On average, the MR-Linac platform showed the least degree of OAR sparing across nearly all dosimetric parameters evaluated when compared to all modalities, especially for contralateral lung Dmean and Dmax (p<0.05 for all dosimetric parameters for all platforms) and contralateral breast Dmax (p<0.003 for all platforms). The CBCT-based platform showed superior dose reduction in contralateral lung mean (p<0.03 for all platforms) and heart Dmean (p = 0.065, p<0.001, p = 0.045 for non-adaptive, MRI-ART, and CT-ART for left breast and p<0.008 for right breast). PTV coverage was comparable across all platforms, averaging at approximately 95%. The CT-based ART platform showed a significantly reduced gradient index relative to the CBCT- and MRI-based platforms (p<0.001). For SPBI treatments, the CT-based ART platforms displayed a higher degree of OAR sparing for many of the dosimetric parameters recorded relative to the other ART and non-ART platforms presented. The MRI-based system typically showed less reduced OAR sparing; however, the advantage of the system is shown if soft tissue contrast is needed. PTV coverage remained comparable across all platforms.
Read full abstract