The Nordic hamstring exercise (NHE) is effective at decreasing hamstring strain injury risk. Limited information is available on the in vivo mechanics of the bicep femoris long head (BFLH) during the NHE. Therefore, the purpose of this study was to observe kinematic, neuromuscular and in-vivo mechanics of the BFLH during the NHE. Thirteen participants (24.7 ± 3.7 years, 79.56 ± 7.89 kg, 177.40 ± 12.54 cm) performed three repetitions of the NHE at three horizontal planes (0°, 20° and −20°). Dynamic ultrasound of the dominant limb BFLH, surface electromyography (sEMG) of the contralateral hamstrings and sagittal plane motion data were simultaneously collected. Repeated measures analysis of variance with Bonferroni post hoc corrections were used on the in vivo mechanics and the kinematic and sEMG changes in performance of the NHE. Likely differences in ultrasound waveforms for the BFLH were determined. Significant and meaningful differences in kinematics and in vivo mechanics between NHE variations were observed. Non-significant differences were observed in sEMG measures between variations. Changes to the NHE performance angle manipulates the lever arm, increasing or decreasing the amount of force required by the hamstrings at any given muscle length, potentially changing the adaptive response when training at different planes and providing logical progressions ore regressions of the NHE. All NHE variations result in a similar magnitude of fascicle lengthening, which may indicate similar positive adaptations from the utilization of any variation.