Abstract

BackgroundBilateral symmetry evaluation in lower limb is used for injury prevention, and is an indicator of returning to post-injury activity. The aim of present study was to investigate the effect of different angular velocities on asymmetry of the hamstring-to-quadriceps strength ratio. MethodIsokinetic concentric hamstring to quadriceps (H:Q) peak torque ratio of the 27 male and female professional basketball players was measured at seven angular velocities (60, 90, 120, 150, 180, 180, 240, 300 deg s−1) on both dominant and non-dominant legs with Biodex Isokinetic Dynamometer. Repeated measure analysis of variance was used to assess the effects of angular velocity and limb side on our outcomes (p≤ 0.05). ResultsThe results showed that with increasing angular velocity, the ratio of hamstrings to quadriceps increases (p = 0.001). There was no difference between dominant and non-dominant limbs in the H:Q peak torque ratio (p = 0.254). In addition, velocity of measurement did not affect the bilateral asymmetry of peak torque ratio of the H:Q of both sides (p = 0.852). ConclusionsBased on the results of this study, it can be concluded that measurement velocity does not affect the bilateral asymmetry of the H:Q peak torque ratio of the dominant and non-dominant limbs. In clinical assessments of H:Q bilateral asymmetry, we suggest that physical trainer can assess bilateral asymmetry of H:Q with arbitrary angular velocities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.