BackgroundRecent findings have shown that imaging voluntarily activated motor units (MUs) by decomposing ultrasound-based displacement images provides estimates of unfused tetanic signals evoked by spinal motoneurons’ neural discharges (spikes). Two methods have been suggested to estimate its spike trains: band-pass filter (BPM) and Haar wavelet transform (HWM). However, the methods’ optimal parameters and which method performs the best are unknown. This study will answer these questions. MethodHWM and BPM were optimized using simulations. Their performance was evaluated based on simulations and 21 experimental datasets, considering their rate of agreement, spike offset, and spike offset variability to the simulated or experimental spikes. ResultsA range of parameter sets that resulted in the highest possible agreement with simulated spikes was provided. Both methods highly agreed with simulated and experimental spikes, but HWM was a better spike estimation method than BPM because it had a higher agreement, less bias, and less variation (p < 0.001). ConclusionsThe optimized HWM will be an important contributor to further developing the identification and analysis of MUs using imaging, providing indirect access to the neural drive of the spinal cord to the muscle by the unfused tetanic signals.