PurposeThis study aims to investigate the lower extremity loading during activities of daily living (ADLs) using the Continuous Scale of Physical Functional Performance (CS-PFP 10) test and wireless sensor insoles in healthy volunteers.MethodsIn this study, 42 participants were recruited, consisting of 21 healthy older adults (mean age 69.6 ± 4.6 years) and 21 younger healthy adults (mean age 23.6 ± 1.8 years). The performance of the subjects during ADLs was assessed using the CS-PFP 10 test, which comprised 10 tasks. The lower extremity loading was measured using wireless sensor insoles (OpenGo, Moticon, Munich, Germany) during the CS-PFP 10 test, which enabled the measurement of ground reaction forces, including the mean and maximum total forces during the stance phase, expressed in units of body weight (BW).ResultsThe total CS-PFP 10 score was significantly lower in older participants compared to the younger group (mean total score of 57.1 ± 9.0 compared to 78.2 ± 5.4, respectively). No significant differences in the mean total forces were found between older and young participants. The highest maximum total forces were observed during the tasks ‘endurance walk’ (young: 1.97 ± 0.34 BW, old: 1.70 ± 0.43 BW) and ‘climbing stairs’ (young: 1.65 ± 0.36 BW, old: 1.52 ± 0.28 BW). Only in the endurance walk, older participants showed a significantly higher maximum total force (p < 0.001).ConclusionThe use of wireless sensor insoles in a laboratory setting can effectively measure the load on the lower extremities during ADLs. These findings could offer valuable insights for developing tailored recommendations for patients with partial weight-bearing restrictions.
Read full abstract