Magnetic field strength applied to a magnetic nozzle radiofrequency (rf) plasma thruster having a 10.5 cm diameter source tube is increased up to about 3 kG by pulsing the solenoid current. A target plate is installed at 30 cm downstream of the source and an impulse bit exerted to the target is measured to assess the thrust, where the thrust balance measurement was impossible due to the interaction between the pulsed magnetic fields and the eddy currents on surroundings. Since the diameter of the plasma plume at the target location is larger than the target diameter, a comparison between the thrust balance and target measurements under continuous magnetic field and rf power is performed prior to the pulsed magnetic field experiments, showing that about 65 percent of the plasma momentum is exerted to the target plate. Saturation of the impulse bit, being equivalent to the force multiplied by the rf pulse width, is clearly observed when increasing the magnetic field strength. The magnetic field providing the force saturation is found to be changed by the source diameter, which is qualitatively explained by considering a change in the plasma loss to the source wall in a thruster model containing the particle balance, power balance, and one-dimensional magnetic nozzle models. It is suggested that the magnetic field strength required for optimizing the force, i.e. the thrust, can be reduced when enlarging the source tube diameter.