Ammonia removal from wastewater was successfully achieved by simultaneous nitrification and denitrification (SND) in a double-chamber microbial electrolysis cell (MEC). The MEC operations at different applied voltages (0.7 to 1.5 V) and initial ammonia concentrations (30 to 150 mg/L) were conducted in order to evaluate their effects on MEC performance in batch mode. The maximum nitrification efficiency of 96.8% was obtained in the anode at 1.5 V, followed by 94.11% at 1.0 V and 87.05% at 0.7. At 1.5 V, the initial ammonia concentration considerably affected the nitrification rate, and the highest nitrification rate constant of 0.1601/h was determined from a first-order linear regression at 30 mg/L ammonium nitrogen. The overall total nitrogen removal efficiency was noted to be 85% via the SND in the MEC operated at an initial ammonium concentration of 50 mg/L and an applied cell voltage of 1.5 V. The MEC operation in continuous mode could remove ammonia (50 mg/L) in a series of anode and cathode chambers at the nitrogen removal rate of 170 g-N/m3.d at an HRT of 15. This study suggests that a standalone dual-chamber MEC can efficiently remove ammonia via the SND process without needing additional organic substrate and aeration, which makes this system viable for field applications.
Read full abstract