Abstract Wind damage and the bark beetle outbreaks associated with it are major threats to non-declining, long-term wood production in boreal forests. We studied whether the risk of wind damage in a forested landscape could be decreased by using stand neighbourhood information in conjunction with terrain elevation information. A reference management plan minimized the differences in canopy height at stand boundaries and did not utilize information on the topography of the terrain, overlooking the possibility that the risk of windthrow may depend on the elevation of the terrain. Alternative management plans were developed by using four different weighting schemes when minimizing differences in canopy height at stand boundaries: (1) no weight (reference); (2) mean terrain elevation at the stand boundary; (3) deviation of the mean elevation of the boundary from the mean elevation of the terrain within a 100-m radius and (4) multipliers that described the effect of topography on wind speed at the stand boundary. For each management plan, we calculated the total number of at-risk trees and the total area of vulnerable stand edge. These statistics were based on the calculated critical wind speeds needed to uproot trees in stand edge zones. Minimization of the weighted mean of canopy height differences between adjacent stands resulted in homogeneous landscapes in terms of canopy height. Continuous cover management was often preferred instead of rotation management due to smaller canopy height differences between adjacent stands and its economical superiority. The best weighting scheme for calculating the mean canopy height difference between adjacent stands was the deviation between the mean elevation of the boundary and the mean elevation of the terrain within 100 m of the boundary. However, the differences between the weighting schemes were small. It was found that reasonably simple methods, based on a digital terrain model, a stand map, and the canopy heights of stands, could be used in forest planning to minimize the risk of wind damage. Validation against actual wind damages is required to assess the reliability of the results and to further develop the methodology presented.