In this paper, we present results on the development of an anisotropic crystalline etching simulation (AGES) program based on a continuous cellular automata (CA) model. The program provides improved spatial resolution and accuracy compared with the conventional and stochastic CA methods. Implementation of a three-dimensional (3-D) dynamic CA technique provides increased simulation speed and reduced memory requirement. The first AGES software based on common personal computer platforms has been realized for simulation of micromachining processes and visualizing results in 3-D space. The software is uniquely capable of simulating the resultant profile following a series of micromachining steps, including surface passivation, reactive ion etching, as well as wet chemical bulk etching. A novel method for accurately obtaining the etch-rate diagram of anisotropic etching using both experimental and numerical techniques has been developed.
Read full abstract