Wasserstein barycenter, built on the theory of Optimal Transport (OT), provides a powerful framework to aggregate probability distributions, and it has increasingly attracted great attention within the machine learning community. However, it is often intractable to precisely compute, especially for high dimensional and continuous settings. To alleviate this problem, we develop a novel regularization by using the fact that c-cyclical monotonicity is often necessary and sufficient conditions for optimality in OT problems, and incorporate it into the dual formulation of Wasserstein barycenters. For efficient computations, we adopt a variational distribution as the approximation of the true continuous barycenter, so as to frame the Wasserstein barycenters problem as an optimization problem with respect to variational parameters. Upon those ideas, we propose a novel end-to-end continuous approximation method, namely Variational Wasserstein Barycenters with c-Cyclical Monotonicity Regularization (VWB-CMR), given sample access to the input distributions. We show theoretical convergence analysis and demonstrate the superior performance of VWB-CMR on synthetic data and real applications of subset posterior aggregation.
Read full abstract