In data-sparse areas such as health care, computer scientists aim to leverage as much available information as possible to increase the accuracy of their machine learning models' outputs. As a standard, categorical data, such as patients' gender, socioeconomic status, or skin color, are used to train models in fusion with other data types, such as medical images and text-based medical information. However, the effects of including categorical data features for model training in such data-scarce areas are underexamined, particularly regarding models intended to serve individuals equitably in a diverse population. This study aimed to explore categorical data's effects on machine learning model outputs, rooted the effects in the data collection and dataset publication processes, and proposed a mixed methods approach to examining datasets' data categories before using them for machine learning training. Against the theoretical background of thesocial construction of categories, we suggest a mixed methods approach to assess categorical data's utility for machine learning model training. As an example, we applied our approach to a Brazilian dermatological dataset (Dermatological and Surgical Assistance Program at the Federal University of Espírito Santo [PAD-UFES] 20). We first present an exploratory, quantitative study that assesses the effects when including or excluding each of the unique categorical data features of the PAD-UFES 20 dataset for training a transformer-based model using a data fusion algorithm. We then pair our quantitative analysis with a qualitative examination of the data categories based on interviews with the dataset authors. Our quantitative study suggests scattered effects of including categorical data for machine learning model training across predictive classes. Our qualitative analysis gives insights into how the categorical data were collected and why they were published, explaining some of the quantitative effects that we observed. Our findings highlight the social constructedness of categorical data in publicly available datasets, meaning that the data in a category heavily depend on both how these categories are defined by the dataset creators and the sociomedico context in which the data are collected. This reveals relevant limitations of using publicly available datasets in contexts different from those of the collection of their data. We caution against using data features of publicly available datasets without reflection on the social construction and context dependency of their categorical data features, particularly in data-sparse areas. We conclude that social scientific, context-dependent analysis of available data features using both quantitative and qualitative methods is helpful in judging the utility of categorical data for the population for which a model is intended.
Read full abstract