In this paper, we propose a new priority algorithm to control the access to the wireless ATM MAC uplink frame, for multimedia traffic like wireless ATM, similar to the Pseudo-Bayesian algorithm presented in [1]. The adaptive framed Pseudo-Bayesian Aloha (AFPBA) algorithm ensures minimum access delay for high priority traffic classes with small delay degradation to low priority traffic classes. Control packets are transmitted in each slot according to transmission probabilities based on the history of the channel and in contention with other packets of the same priority class. The number of contention slots assigned for each priority class, on a given frame, changes adaptively according to its priority index and the estimated arrival rate on each frame using an adaptive slot assignment mechanism. Finally, the throughput analysis of the algorithm is presented and the delay performance is evaluated by simulation on a wireless channel in the presence of shadowing, Rayleigh fading and capture. Results show that the wireless channel offers significant delay improvements to all priority packets, especially in the presence of fast fading.
Read full abstract