Cotton and polyester fiber blends are commonly used to improve the aesthetic features of finished items. The denim industry’s growing need for polyester fiber aids in analyzing the performance of denim fabrics woven from rigid and stretched weft yarn combined with cotton and polyester. This study evaluates the weight, dimensional changes, stiffness, tensile and tearing strength, stretch, and comfort properties of denim fabric woven from cotton and polyester in various blended ratios. Here, Ne 14/1 (42 tex) 100% cotton warp yarn and Ne 18/1 (33 tex) weft yarns, consisting of 100% cotton, 75/25, 50/50, and 25/75 cotton/polyester (CO/PES) blends, as well as 100% polyester, were used to produce 3/1 Z twill denim fabric. The weft yarns were categorized into three groups: rigid, core-spun, and dual-core-spun yarns. Experimental results showed a higher polyester content in weft yarn, and denim fabrics’ tensile and tearing strength was improved, whereas fabrics’ weight loss, dimensional changes, and stretch properties were reduced. Furthermore, different statistical analyses were conducted to evaluate the type of weft yarn and blending ratio interaction and correlation with fabric properties. Additionally, a regression model was developed with the weft yarn type and blending ratio as independent variables to predict the fabric properties.