Drought can seriously affect the yield and quality of tea. The interaction between rhizosphere microorganisms and tea plants could enhance the drought resistance of tea plants. However, there are few studies on the effects of abundant and rare microorganisms on tea plants. In this study, the contributions of abundant and rare bacteria in the rhizosphere microorganisms of ‘FudingDabaicha’ and ‘Baiye No.1’ to the resistance of tea plants to drought stress were studied using 16SrRNA sequencing, co-occurrence network analysis, and PLS-PM modeling analysis. By measuring the contents of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), malondialdehyde (MDA), proline, soluble sugar and soluble protein, it was found that the activity of antioxidant enzymes and the content of osmotic substances increased significantly after drought stress (p < 0.001). In the co-occurrence network of the two varieties, the average degree, clustering coefficient, and modularity index of the rare bacteria were greater than those of the abundant bacteria, and the path coefficient of the rare bacteria to drought was greater than that of the abundant bacteria. The contribution of rare microorganisms in ‘FudingDabaicha’ to drought stress was greater than that in ‘Baiye No.1’. The rare bacteria of the two varieties were positively correlated with amino acids and negatively correlated with lipids. The results of this study will provide new insights for the use of rhizosphere microorganisms in improving the drought resistance of tea plants.
Read full abstract