A system is described for the removal of eye movement and blink artefacts from single channel pattern reversal electroretinogram recordings of very poor signal-to-noise ratios. Artefacts are detected and removed by using a blind source separation technique based on the jadeR independent component analysis algorithm. The single channel data are arranged as a series of overlapping time-delayed vectors forming a dynamical embedding matrix. The structure of this matrix is constrained to the phase of the stimulation epoch: the term synchronous dynamical embedding is coined. A novel method using a marker channel with a non-independent synchronous feature is employed to identify the single most relevant source estimation for reconstruction and signal recovery. This method is non-lossy, all underlying signal being recovered. In synthetic datasets of defined noise content and in standardised real data recordings, the performance of this technique is compared to conventional fixed-threshold hard-limit rejection. The most significant relative improvements are achieved when movement and blink artefacts are greatest: no improvement is demonstrable for the random noise only situation.