Binary grass-clover and multi-species swards can increase herbage yields or facilitate reduced inputs of inorganic fertiliser nitrogen (N) compared with perennial ryegrass monocultures. However, the efficiency of the ensilage process and the nutritive value of silage produced from multi-species swards has not been documented. Replicate samples from grass-red clover binary mixture and multi-species mixture swards were ensiled in laboratory silos to assess the ensilability, fermentation characteristics, conservation losses and silage nutritive value compared with grass monocultures produced using inorganic N fertiliser. The results suggest that assessment of the ensilability and subsequent ensilage characteristics of binary and multi-species mixtures should be based on direct sampling from such mixtures rather than being predicted from values obtained from monocultures of constituent species. Under favourable ensiling conditions, unwilted binary mixtures and multi-species mixtures are satisfactorily preserved as silage, comparable to a perennial ryegrass monoculture receiving inorganic N fertiliser. However, when ensiled under more challenging crop conditions the mixtures exhibited a greater requirement for their preservation to be aided, compared with the perennial ryegrass monoculture. Despite the application of inorganic N reducing the legume content of multi-species mixture swards, it had relatively little effect on herbage ensilability or silage preservation. For all species treatments, silage nutritive values were primarily dependent on the pre-ensiling values, although herbage digestibility values declined during ensilage where the ensilage process was inefficient. The current study suggests that in order to be satisfactorily preserved as silage, binary grass-clover and multi-species swards have a greater requirement for an adequate rapid field wilt and/or effective preservative application compared with perennial ryegrass produced using inorganic fertiliser N.